A Paradigm for Joined Hamiltonian and Dissipative Systems
نویسنده
چکیده
A paradigm for describing dynamical systems that have both Hamiltonian and dissipative parts is presented. Features of generalized Hamiltonian systems and metric systems are combined to produce what are called metriplectic systems. The phase space for metriplectic systems is equipped with a bracket operator that has an antisymmetric Poisson bracket part and a symmetric dissipative part. Flows are obtained by means of this bracket together with a quantity called the generalized free energy, which is composed of an energy and a generalized entropy. The generalized entropy is some function of the Casimir invariants of the Poisson bracket. Two examples are considered: (1) a relaxing free rigid body and (2) a plasma collision operator that can be tailored so that the equilibrium state is an arbitrary monotonic function of the energy.
منابع مشابه
Dilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملDissipative Perturbations of 3d Hamiltonian Systems
In this article we present some results concerning natural dissipative perturbations of 3d Hamiltonian systems. Given a Hamiltonian system ẋ = PdH, and a Casimir function S, we construct a symmetric covariant tensor g, so that the modified (so-called “metriplectic”) system ẋ = PdH + gdS satisfies the following conditions: dH is a null vector for g, and dS(gdS) ≤ 0. Along solutions to a dynamica...
متن کاملاتلاف در مدارهای الکتریکی کوانتومی مزوسکوپی RLC
The quantum theory for a mesoscopic electric circuit with charge discreteness is investigated. Taking the Caldirola-Kanai Hamiltonian in studding quantum mechanics of dissipative systems, we obtain the persistent current and the energy spectrum of a damped quantum LC-design mesoscopic circuit under the influence of a time-dependent external field.
متن کاملPseudo-hamiltonian Realization and Its Application∗
In this paper, the problem of pseudo-Hamiltonian realization of a control system is studied. Several sufficient conditions are obtained. The stability of a dynamic system is investigated via dissipative pseudo-Hamiltonian realization, and the stabilization of a control system is also investigated via feedback dissipative pseudo-Hamiltonian realization. Some relations between the stability (asym...
متن کاملThe Hamiltonian Formalism for Dissipative Mechanical Systems
In this paper show that dissipative mechanical systems can be represented as Hamiltonian formalism. We have defined an expanded Hamiltonian function that leads to a unique conservative system for every phase flow of a dissipative mechanical system. We have demonstrated, whether the class of dissipative mechanical system has an analytical solution or not, it can be represented as an infinite num...
متن کامل